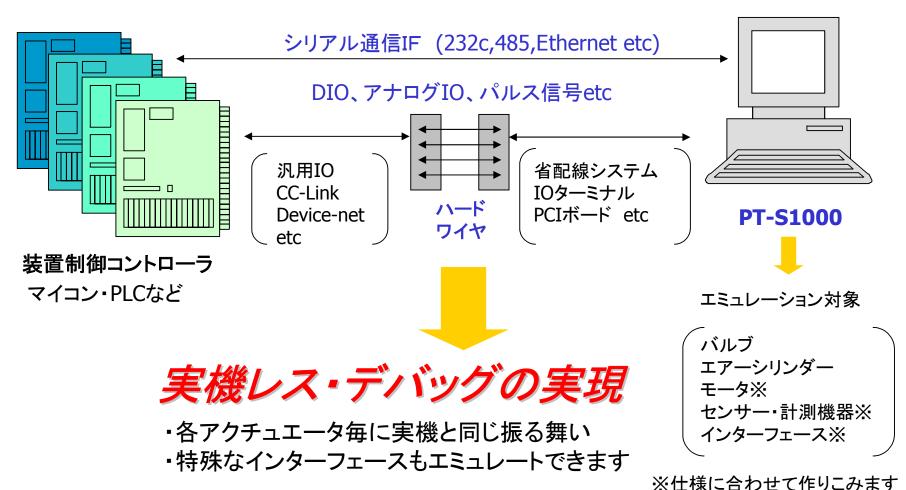


装置制御向け ソフトウエア開発用HILシミュレータ

PT-S1000


Production Tool Simulator

本製品はジョイント・ノアとワールド・ウエアの共同開発によるオリジナル製品です

PT-S1000 システムの概要

PT-S1000は、製造装置で使用するセンサやアクチュエータをパソコン上でエミュレートするHIL(Hardware In Line)シミュレータです。

ITTXICE 17E CTF9C07A9

PT-S1000は、こんなことを解決します(その1)

実機を使うデバッグやテストの問題点

- ・ソフト改造の失敗が多い。
- デバッグのため現地出張が長期化する。
- 装置製作のスケジュールが遅れて、 デバッグやテストの日程が削られる。
- 装置が故障してテストができない。
- ・実機がクリーンルームなどの特殊環境に あるので作業効率が悪い。
- ・誤動作の原因がハードウエアなのかソフトウエアなのか切り分けに時間がかかる
- ・装置破損や人体への危険をともなう デバッグやテストを行う必要があり、 いきなり実機で実施するのは危険

PT-S1000を使えば・・・

ソフト改造の成功率は大幅に改善。現地への長期出張も無くなります。

実機を使わないため、実機装置の 出来・不出来や作業環境によって、 デバッグやテストスケジュールが 乱されることはありません。

PT-S1000で動かして誤動作すればソフトウエアが原因。正常ならば実機のハードウエアが原因。

まず、最初にPT-S1000を使って、 ソフトウエアの危険要因を検出・ 除去すれば、実機テストの安全性 は高まります。

PT-S1000は、こんなことを解決します(その2)

スタブ型シミュレータの問題点

(SIL(Software In Line)シミュレータ)

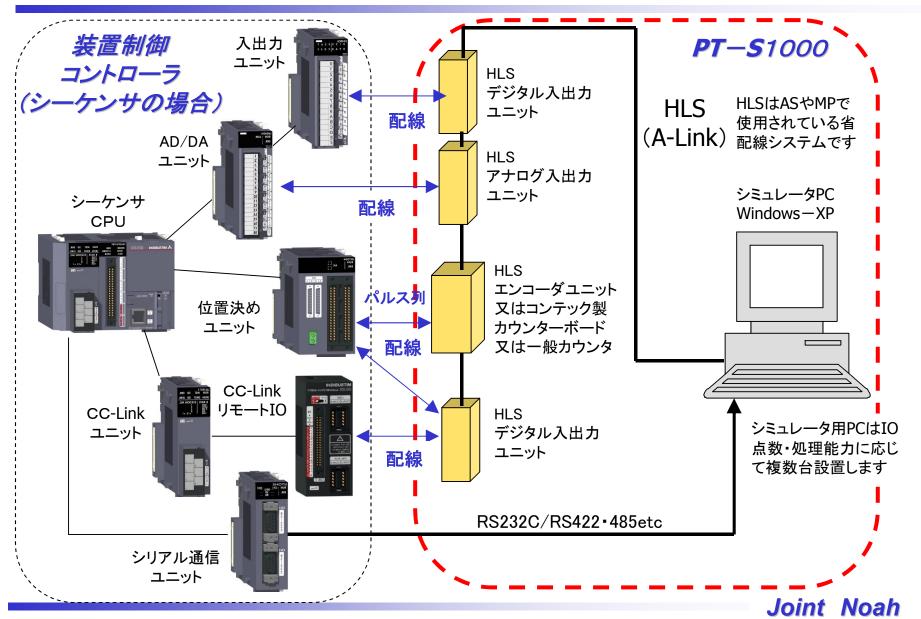
・テスト用スタブ(IOシミュレートさせるための下位モジュール)の開発が必要

PT-S1000を使えば・・・

・IOエミュレータなので、スタブの 開発は不要です

・テスト用のスタブを有効にするため、テストするごとにビルドが必要

- ・テストするためのビルドは不要。
- ・シミュレータで動いたソフトを、そのまま実機に搭載できます。


・ビルド作業を伴うので、テストには、ソフト 開発環境と開発者が必要

- ・限りなく実機テストに近いため、 開発環境は不要。
- ・ソフト開発者以外のメンバーでのテストが可能

PT-S1000 のハードウエア構成例

PT-S1000 のハードウエア購入品の扱い

- 1. お客様で用意していただくもの
- (1)装置制御コントローラ:現在、装置制御で使用しているコントローラ(PLC等)
 - 2. お客様との協議が必要な購入品

(1)シミュレータPC:お客様の遊休PCでも可能

Windows-XP(CPU: 1GHZ メインメモリ512M以上)

:デスクトップ・ノートPCでも可能

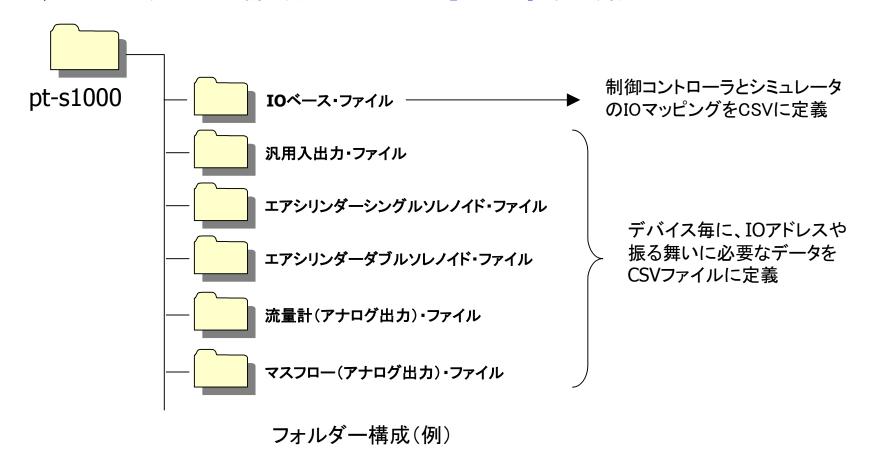
デスクトップの場合 PCIバス拡張スロットが1~2必要

ノートPCの場合、PCカードが実装できること

(2)HLS(A-Link):HLS(※)は、半導体業界などで使われている省配線システムです。

:お客様で購入された方が安くなりますのでお勧めします。

(※)アルゴシステム㈱等で販売しております


(3)その他配線一式

テキストベースで、デバイスの追加・削除、IOの変更が出来ます

★デバイスは、CSVファイルに定義されるので、誰でも簡単にデバイスの追加や変更ができます。

(PT-S1000では、エミュレート対象となるアクチュエータのことを「デバイス」と呼びます。)

★デバイスの動作時間はGUIから変更できるため、タイムアウトエラー等も簡単に発生させることができます。

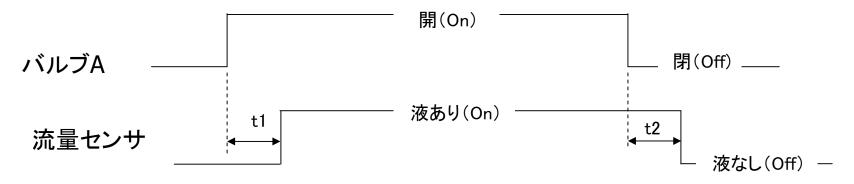
エアーシリンダー(シングルソレノイド)の定義ファイル例(CSV)

#エアシリンダー(シングルソレノイド):(ACS)				コントローラIO			デフォルト状態				
#ユニット	パーツ グループ ID	パーツ ID	パーツ名称	FOR 出力	REV入力 (原点)	FOR 入力	REV 入力	FOR 入力	動作時間 (×0.1秒)		
Proc1	ACS	001	カバーロック	Y020	X020	X021	ON	OFF	20		
Proc1	ACS	002	シャッター	Y030	X030	X031	OFF	OFF	20		
Proc2	ACS	003	チャック開閉	Y040	X040	X041	ON	OFF	50	,	
Proc2	ACS	004	カバーロック	Y050	X050	X051	OFF	OFF	50		追加
デバイスID IO定義 起動時の状態 ▼											
GUIから変更可能 ◆											

★IO入出力状態や、アナログ信号および位置決めモータのパルスカウントのデータがモニターできます。

IO入出力モニター例

コントローラIO	IO名称	状態		
X010	SMIF READY	On		
X011	SMIF POD INPLACE	On		
X013	キャヒ゛ネット3 ALARM	Off		
Y00	TBC シャッター洗浄スプレー	On		
Y01	DBC シャッター洗浄スプレー	Off		
Y04	MT1 吸着	Off		
Y05	MT1 吸着解除	On		

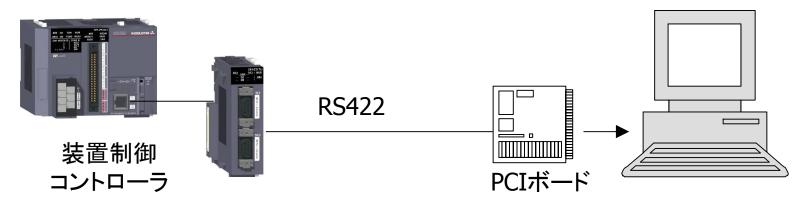


★デバイスを自動モードにすると、装置の連続運転が可能になるように、デバイスの振る舞いを設 定することが可能になります。

デバイスを手動モードにすると、任意のタイミングでエラーを発生させることができます。

●流量監視付きバルブの場合

:下図に示すように、バルブAと流量センサが連動することで正常運転ができるとします


●GUI設定の例(イメージ図):

★シリアル通信を使った制御機器に関しても、エミュレーションや通信ログが可能です。

シリアル通信制御温調器のエミュレーション

GUI設定・表示の一例(温調器)

詳細については 別途、通信仕様 のすり合わせが 必要になります

現在温度 :60℃ → 設定

設定温度 :70℃ P:30 I:200 D:01

通信ログ

12:02:35 01PV0700 12:02:34 02SV0366